Math 1663 Analysis I

Tuesday 3 October 2023

Problem session by Adam Abrams

Topics

Limits

- Sequences
- Functions
- Continuity

Derivative calculations

- Power Rule
- Trig, log, exp
- Product Rule
- Chain Rule

Derivative applications

- Tangent lines
- Increasing and decreasing
- Concavity
- Min and max

Integrals

- Indefinite
- Definite
- Applications

Some students may already know some of these topics, but we will cover them all during this semester.

Course format

Lecture (Wykład)

- Wednesdays 11:15-13:00 with dr Adam Abrams.

Problem session (Ćwiczenia)

- Tuesdays 18:55-20:35 with dr Adam Abrams,
- Thursdays 7:30-09:00 with dr Artur Rutkowski.

Lecture slides, tasks lists, and course policies are available at

theadamabrams.com/1653

Grading policy

The same grade is used for 1653 W and 1653C.

- Six quizzes (5 points each), but the lowest score is ignored!
- Two exams (15 points each).
- Participation (5 points).

This makes $5 \times 5+15+15+5=60$ total possible points.

Points	$[0,30)$	$[30,36)$	$[36,42)$	$[42,48)$	$[48,54)$	$[54,60]$
Grade	2.0	3.0	3.5	4.0	4.5	5.0

Grading policy

The same grade is used for 1653 W and 1653 C .

Points	$[0,30)$	$[30,36)$	$[36,42)$	$[42,48)$	$[48,54)$	$[54,60]$
Grade	2.0	3.0	3.5	4.0	4.5	5.0

More than 4 unexcused absences after 6 Oct \rightarrow course grade 2.0.
You can work together on task lists (which are not graded), but quizzes and exams are individual. All work can be checked in one-on-one meeting with either instructor.

- Cheating on a quiz \rightarrow quiz grade 0 .
- Cheating on exams \rightarrow course grade 2.0.

Accessibilily

Department of Accessibility and Support for People with Disabilities (DDO)

- Office: C-13 rooms 109 and 107
- Telephone: 713204320
- Website: https://ddo.pwr.edu.pl/
- Email: pomoc.n@pwr.edu.pl

If you need any kind of accommodation, please write me an email. I am happy to help.

English Language and some polls

poles

Poles

polls

Draw $y=\frac{1}{2} x+3$

$y=x^{2}$
$y=x^{2}-1$
$y=(x-1)^{2}$

Task: Solve $2 x^{2}+7 x-15=0$

Task: Give an equation for the line through the point $(5,1)$ with slope 3 .

Algebra review

maybe

- " $6 \times a$ " and " $6 \cdot a$ " and " $6 a$ " all mean six times a.
- $6(a+b)$ can be re-written as $6 a+6 b$.
- $3 x-12$ can be re-written as $3(x-4)$.

This is "factoring".

- $(x+7)(y+2)$ can be expanded to $x y+2 x+7 y+14$.
- $(x+7)^{2}$ can be expanded to $x^{2}+14 x+49$.

In general, $(a+b)^{2}$ expands to $a^{2}+2 a b+b^{2}$.

- $x^{2}+14 x+49$ can be factored as $(x+7)^{2}$.

Be careful!

- $(a \times b)^{2}$ can be re-written as $a^{2} \times b^{2}$.
- $(a+b)^{2}$ can not be re-written as $a^{2}+b^{2}$.
- Try it with actual numbers:

$$
(2+3)^{2}=5^{2}=25, \text { but } 2^{2}+3^{2}=4+9=13
$$

- Testing specific numbers can only show you when a rule is false. It cannot guarantee that a rule is correct because you might pick numbers where it accidentally works, like $(0+0)^{2}=0=0^{2}+0^{2}$.
- $\sqrt{a+b} \neq \sqrt{a}+\sqrt{b}$
- $\sin (a \cdot b) \neq \sin (a) \cdot \sin (b)$

Types of numbers

- Natural numbers: $0,1,2,3,4, \ldots$
- In some books, only $1,2,3,4, \ldots$
- Integers: ..., - $3,-2,-1,0,1,2,3,4, \ldots$
- Rational numbers are all the numbers that can be written as one integer divided by another. Examples: $\frac{1}{2}, \frac{-2}{3}, 1.5,8,0, \frac{-5}{4}$
- Real numbers are all the values on a number line. Examples:

Types of functions

- Polynomial:

$$
x^{n}+\cdots+\theta x^{2}+\cdots x+\infty
$$

Like with rational numbers, a function can be a polynomial even if it is written in a different way. Example: $(x+4)^{2}$.

- Exponential function:

$$
\odot \cdot \odot^{x}
$$

- Trig function:
and similar for cos, tan, cot, sec, csc.
- Absolute value

Absolute value

- Algebra idea: make numbers positive
- Geometry idea: measure distance
- We write x for the absolute value of x.
- Examples: 5 is $5 \quad-3$ is $3 \quad\left|-\frac{9}{2}\right|$ is $\frac{9}{2} \quad 37.2$ is 37.2
- Definition, version 1: $\quad x=\left\{\begin{aligned} x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{aligned}\right.$

Absolute value

- Algebra idea: make numbers positive
- Geometry idea: measure distance
- We write x for the absolute value of x.
- Definition, version 2: x is the distance between 0 and x.

Absolute value

What does the graph $y=x$ look like?

Equations of lines

Slope-intercept form:

$$
y=m x+b .
$$

- This line has slope m.
- This line includes the point $(0, b)$.
https://www.desmos.com/calculator/ae5cdos3mv

Point-slope form:

$$
y-b=m(x-a) \quad \text { or } \quad y=b+m(x-a)
$$

- This line has slope m.
- This line includes the point (a, b).
https://www.desmos.com/calculator/t2iug79i3m

Expanding

$$
\begin{aligned}
& (x+7)^{2}=x^{2}+14 x+49 \\
& (x+2)^{3}=?
\end{aligned}
$$

The Binomial Theorem gives rules for higher powers:

$$
\begin{aligned}
(x+y)^{n}= & C(n, 0) x^{n}+C(n, 1) x^{n-1} y+C(n, 2) x^{n-2} y^{2}+ \\
& C(n, 3) x^{n-3} y^{3}+\cdots+C(n, n-1) x y^{n-1}+C(n, n) y^{n}
\end{aligned}
$$

where the coefficients

$$
C(n, k)=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k(k-1)(k-2) \cdots 2 \cdot 1}
$$

can also be found from Pascal's Triangle.

Expanding

$$
\begin{aligned}
& (x+7)^{2}=x^{2}+14 x+49 \\
& (x+2)^{3}=?
\end{aligned}
$$

The Binomial Theorem gives rules for higher powers:

$$
\begin{aligned}
(x+y)^{n}= & x^{n}+n x^{n-1} y+\frac{n(n-1)}{2} x^{n-2} y^{2}+ \\
& \frac{n(n-1)(n-2)}{3!} x^{n-3} y^{3}+\cdots+n x y^{n-1}+y^{n} .
\end{aligned}
$$

The expansions for $(a+b)^{2}$ and $(a+b)^{3}$ are the most important to know. Higher powers are used less frequently.

Measuring angles

In this class we will mostly use radians (after we learn about derivatives, I can explain why).

"45-45-90 Eriangle" "30-60-90 Eriangle"

It's possible to define \sin and cos values by dividing one side length (e.g., $\sqrt{3}$) by another (e.g., 2), but for this class it is better to re-scale the triangles to have a hypotenuse of exactly 1.
"45-45-90 triangle" "30-60-90 triangle"

Memorize these!

Trig functions

Memorize these!

Trig functions

Exponential functions

Graph $y=2^{x}$.
Graph $y=3^{x}$.
Graph $y=2.71^{x}$. The number e is approximately 2.71828. So the graph of e^{x} looks like 2.71x.

Graph $y=2^{-x}$.

Opposites of exponents

- If $x^{3}=27$ then $x=\ldots$
- If $x^{2}=64$ and $x>0$ then $x=\ldots$
- If $x^{2}=5$ and $x>0$ then $x=\ldots$
- If $2^{x}=8$ then $x=\ldots$
- If $2^{x}=9$ then $x=\ldots$

Definition: if $x^{2}=a$, then a is exactly \sqrt{x}.
Definition: if $2^{x}=a$, then a is exactly $\log _{2}(x)$.
Definition: if $e^{x}=a$, then a is exactly $\ln (x)$.

